گزارش فنی: مدل شبکه عصبی مصنوعی پرسپترون چند لایه برای پیش‌بینی دبی روزانه بار معلق رسوب و ارزیابی عوامل موثر در برآورد رسوب

Authors

  • میترا تنهاپور دانشجوی کارشناسی ارشد سازه‌های آبی، پردیس ابوریحان، دانشگاه تهران
Abstract:

پیش‌­بینی مقدار رسوب در طرح­‌های مهندسی منابع آب نظیر تأسیسات تنظیم و انحراف جریان و سدهای مخزنی از عوامل مهم در تعیین عمر مفید و بررسی عملکرد آن­‌ها است. در این تحقیق مدلی برای تخمین دبی روزانه رسوب، با استفاده از مدل شبکه عصبی پرسپترون چند لایه با الگوریتم یادگیری پس انتشار خطا ارائه شد و عملکرد مدل با مدل رگرسیون غیرخطی چند متغیره و منحنی­‌سنجه رسوب در مراحل آموزش و آزمون مقایسه شد. بدین منظور از داده­‌های دبی لحظه­‌ای، بارش، شماره روز در سال و دبی آب در روز قبل در محدوده سال­‌های 1388-1369 در ایستگاه پل زغال واقع در حوضه رودخانه چالوس استفاده شد. نتایج حاصل از آزمون ترکیب­ مختلف مجموعه داده­‌های ورودی نشان داد، ابتدا پارامتر دبی لحظه­‌ای، سپس دبی روز قبل و در نهایت عوامل بارش و شماره روز سال به‌ترتیب بیشترین تأثیر را در عملکرد مدل دارند، این نتایج تطابق نسبتا خوبی با نتایج حاصل از آنالیز ضرایب استاندارد شده مدل رگرسیونی دارد. برای مقایسه ساختارهای مختلف شبکه عصبی از معیارهای ضریب تبیین (R2) و جذر میانگین مربع خطا (RMSE) استفاده شد. بدین ترتیب با حذف متغیر شماره روز سال، بهترین شبکه با ساختار 1-5-3 و مقادیر 0.89= R2 و 0.02=RMSE به‌دست آمد. نتایج حاصل از مقایسه مدل­‌ها نشان داد، در مرحله آموزش و آزمون به‌ترتیب روش منحنی­‌سنجه و مدل شبکه عصبی بهترین عملکرد را به خود اختصاص داده­‌اند و مدل شبکه عصبی مقدار ضریب همبستگی را تقریباً 16 درصد نسبت به دو روش دیگر افزایش داد. با استفاده از نتایج این تحقیق، عوامل موثر بر تخمین دبی رسوب شناسایی شده و می­‌توان در پروژه­‌ها، با صرف وقت و هزینه کمتر برآورد دقیق­‌تری از دبی رسوب داشت.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

مقایسه میزان کارآیی شبکه عصبی مصنوعی و مدل‌های ‏رگرسیونی، منحنی‌سنجه رسوب در برآورد ‏رسوب معلق روزانه

تعیین میزان فرسایش خاک و بار رسوبی رودخانه عملاً کاری مشکل است؛ بنابراین روش های مختلفی برای آن ها پیشنهاد شده است. یکی از روش های نوین در حل مسائل مهندسی آب و همچنین برآورد رسوب معلق رودخانه ها، استفاده از شبکه عصبی مصنوعی است که با الگو برداری از شبکه مغز انسان، ضمن اجرای فرآیند آموزش، روابط درونی بین داده ها را کشف کرده و به موقعیت های دیگر تعمیم می دهد. هدف از انجام این تحقیق، بررسی کارآیی ر...

full text

مقایسه میزان کارآیی شبکه عصبی مصنوعی و مدل های ‏رگرسیونی، منحنی سنجه رسوب در برآورد ‏رسوب معلق روزانه

تعیین میزان فرسایش خاک و بار رسوبی رودخانه عملاً کاری مشکل است؛ بنابراین روش های مختلفی برای آن ها پیشنهاد شده است. یکی از روش های نوین در حل مسائل مهندسی آب و همچنین برآورد رسوب معلق رودخانه ها، استفاده از شبکه عصبی مصنوعی است که با الگو برداری از شبکه مغز انسان، ضمن اجرای فرآیند آموزش، روابط درونی بین داده ها را کشف کرده و به موقعیت های دیگر تعمیم می دهد. هدف از انجام این تحقیق، بررسی کارآیی ر...

full text

مقایسه کارآیی مدل سنجه رسوب و شبکه عصبی مصنوعی در برآورد بار کف رودخانه‌ها

به دلیل مشکلات نمونه‎برداری و عدم دقّت کافی معادلات تجربی، سنجش و گزینش مناسب‎ترین روش‎های برآورد رسوبات بار کف، اهمّیّت زیادی دارد.هدف پژوهش حاضر، مقایسة کارآیی مدل‎های آماری شبکة عصبی مصنوعی و منحنی سنجة رسوب در برآورد رسوبات بار کف است؛ بدین منظور، ابتدا 5 ایستگاه هیدرومتری دارای بیشترین تعداد نمونه انتخاب شدند؛ سپس منحنی سنجة رسوب و مدل شبکة عصبی مصنوعی با 70% داده‌های آنها ساخته و ارزیابی دقّت...

full text

تخمین دبی بار معلق رسوب با استفاده از بهترین ساختار شبکه عصبی مصنوعی در حوزه آبخیز طالقان

  Prediction of sediment load transported by rivers is a crucial step in the management of rivers, reservoirs and hydraulic projects. In the present study, in order to predict the suspended sediment of Taleghan river by using artificial neural network, and recognize the best ANN with the highest accuracy, 500 daily data series of flow discharge on the present day, flow discharge on the past day...

full text

مقایسه مدل‌های شبکه عصبی مصنوعی و منحنی سنجه رسوب در شبیه‌سازی میزان رسوب معلق؛ مطالعه موردی حوزه آبخیز شاهرود

این پژوهش با هدف مقایسه کارآیی برخی مدل‌های شبیه­سازی میزان رسوب معلق شامل منحنی سنجه رسوب و شبکه عصبی مصنوعی و ارائه مدل بهینه بر اساس دبی جریان در حوزه آبخیز شاهرود و بر روی ایستگاه­های هیدرومتری گلینک، باغکلایه، لوشان و رجائی دشت انجام شد. به منظور شبیه­سازی میزان رسوب معلق از مدل منحنی سنجه رسوب یک خطی و مدل­های شبکه عصبی پرسپترون چند لایه و تابع پایه شعاعی بهره گرفته و سپس ارزیابی این مدل­...

full text

قابلیت شبکه های عصبی مصنوعی جهت مدل سازی چند ایستگاهه بار معلق در مقایسه با روش منحنی سنجه رسوب

رسوبات حمل شده توسط رودخانه می تواند باعث بوجود آمدن خساراتی به اراضی کشاورزی و تأسیسات آبی گردد. برآورد صحیح بار رسوب در تأسیسات آبی مانند سدها باعث جلوگیری از صرف هزینه های اضافی خواهد شد. کشور ما ایران با دارا بودن رودخانه های متعدد، پتانسیل بالایی جهت ایجاد سد دارد. یکی از دلایل آن کاهش یافتن ظرفیت انتقال آب توسط مقطع رودخانه به دلیل انباشتگی رسوبات می باشد. لذا بررسی پدیده رسوب و برآورد رس...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 2

pages  249- 255

publication date 2018-06-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023